Science Saturday: Mining the molecular origins of breast cancer for new cures

science-saturday:-mining-the-molecular-origins-of-breast-cancer-for-new-cures
a graphic illustrating the concept of genetic testing for breast cancer

October is Breast Cancer Awareness Month, a time to focus on new strategies for prevention and early detection. Mayo Clinic Center for Regenerative Medicine and Mayo Clinic Cancer Center support stem cell biology research to uncover the molecular origins of breast cancer in order to bring new cures to the practice. Answering what are the causes of breast cancer at the cellular level, and why some individuals are more prone to breast cancer than others, would advance cancer care.

“Recent discoveries have forced us to rethink how breast cancers develop. There are billions of cells that are produced in the breast during the lifetime of a person but interestingly, only few cells are able to develop into tumors. Notably these tumors originate from a single breast cell. We are beginning to get some insight into these cells and what makes them vulnerable to cancer,” says Nagarajan Kannan, Ph.D., director of the Stem Cell and Cancer Biology Lab within the Mayo Clinic Department of Laboratory Medicine and Pathology. “We are trying to figure out the stage during normal mammary gland development where certain cells acquire the necessary molecular launch pad for a tumor.”

Seeking the origins of breast cancer

Breast cancer affects 1 in 8 American women as well as some men. More than 42,000 people in this country will die of the disease this year, according to the American Cancer Society.

While some researchers look to tumor genetics for clues to understanding and fighting breast cancer, Dr. Kannan’s team focuses on the molecular and cellular origins of malignant cells within mammary glands that appear healthy. This is nothing short of searching for a needle in a haystack. Mammary glands are composed of two kinds of functional cells, namely luminal and myoepithelial cells, that cooperate to produce and pump breast milk. These functional cells sometimes die and are promptly replaced by progenitor cells, which in turn are replaced by rare stem cells. These rare stem cells maintain a hierarchical process of cell division and differentiation. The process is regulated by sex hormones which are also known to play a role in certain breast cancer development.

Read the rest of the article on the Center for Regenerative Medicine blog.

____________________________________________

Other Mayo Clinic medical research websites:

  • 5
  • 0